Proof that every rational algebraic equation has a root

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A short proof that every finite graph has a tree-decomposition displaying its tangles

We give a short proof that every finite graph (or matroid) has a tree-decomposition that displays all maximal tangles. This theorem for graphs is a central result of the graph minors project of Robertson and Seymour and the extension to matroids is due to Geelen, Gerards and Whittle.

متن کامل

New Proof of the Theorem That Every

Which Carl Friedrich Gauss has presented, In order to obtain the highest honors in philosophy, To the famous faculty of philosophers At the Julia Carolina Academy.

متن کامل

Every Body Has a Brain

[1] http://ebhb.morphonix.com/ [2] http://fireflyfoundation.wordpress.com/brain-games/every-body-has-a-brain/ [3] http://dev.cdgr.ucsb.edu/organizations/morphonix [4] http://dev.cdgr.ucsb.edu/category/genre/educational [5] http://dev.cdgr.ucsb.edu/category/genre/music/dance [6] http://dev.cdgr.ucsb.edu/category/topics/anatomy [7] http://dev.cdgr.ucsb.edu/category/topics/brain [8] http://dev.cdg...

متن کامل

A Simple Proof That Rational Curves on K3 Are Nodal

The Picard group of S is generated by two effective divisors C and F with C = −2, F 2 = 0 and C · F = 1. It can be realized as an elliptic fiberation over P with a unique section C, fibers F and λ = 2. It is the same special K3 surface used by Bryan and Leung in their counting of curves on K3 surfaces [B-L]. It is actually the attempt to understand their method that leads us to our proof. We wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1907

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500036518